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number  of transfer units per unit of coordinate x; 
column vector of K; 
common  perimeter of channels i and j ;  
overall surface conductance for heat transfer 
between channels i and j ;  
number  of channels;  
temperature of fluid in channel i; 
space coordinate along the channel ; 
column vector; 
coefficient matrix ; 
diagonal matrix; 
n × n matrix; 
n × n symmetric matrix; 
temperature column vector, t = It1, t2 , . . . ,  t , ] r ;  
fluid heat capacity rate. 

CONSIDER the equation 

dt 
= A t  (1) 

dx 

where t is the column matrix of temperature and A is a 
square, non-block diagonal matrix of order n and of rank 
equal to n -  1 [1] defined by 

~t : a l l a l 2 . . . a l n  

_a°la°211 12t 

k i jh l j  
aij - (i :/: j, kljhi~ = kjihjl) 

1 n 

a i i :  - -  ~ .i "= ki ihi)  (klihll : 0) .  

The solution t depends on the features of the coefficient 
matrix A. 

The properties of A have been discussed by other authors. 
For example in [2, 3] it is shown that all the latent roots 

are real and in [1] it is proved that the necessary and 
sufficient condition for A to have at least two zero latent 
roots is 

n 

E w,=o. 
i=1 

It results from the foregoing, that to characterize the 
spectrum of A one problem still remains, namely the maxi- 
mum multiplicity of zero latent roots. 

Two lemmas will be helpful in answering this question. 

Lemma 1 
If S = [slj] is a symmetric matrix of order n, x = (xl . . . . .  x,) 

any column vector and y a proper vector of S corresponding 
to zero latent root, then the scalar product 

(Sx, y) = 0. 

The proof depends on the property of a symmetric matrix 
that 

(Sx, y) = (x, Sy)  = (x, 0) = 0. 

Lemma 2 
I fx  and S are given as in lemma 1 and S is a semidefinite 

matrix (positive or negative), then only a proper vector, say 
x, of S appropriate to a zero latent root satisfying 

S x =  0, 

may be a non-trivial solution of the equation 

(Sx ,  x) = (x, S x )  = 0. 

Proof  
Let S be negative semidefinite. Then it follows that 

(Sx, x) ~< 0; 

furthermore 
n 

(Sx,  x) = y .  s , jx,xs 
i , j= l  

is a continuous function of the n variables x l ,  x2 . . . .  , x .  
possessing continuous first and second partial derivatives. 
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Consequent ly the solution of equat ion 

( S x ,  x) = 0 

is equivalent to determining the max imum of (Sx, x); this 
leads to 

~(Sx, x) ~(Sx, x) ~(Sx, x) 
e ~ =  ~x~ . . . . . . .  cx° 0 

and gives 

S k l X I J V S k z X z J v . . . - ~ - S k n X n = O  ( k =  1,2 . . . . .  n) 

which may  be expressed in the form 

S x =  0. 

If S is a positive semidefinite matr ix the p roof  is similar to 
the above. 

Corollary 

I f S  fulfils assumpt ions  o f l e m m a  2 and Sx  ¢ 0, then 

(Sx, x) = (x, Sx) ~ 0. 

Theorem 
The multiplicity of the zero latent root of A does not  

exceed two. 
Fo r  the p roof  let us remark [1,2]  that A can be rep- 

resented by the product.  
A = B  1C 

where 

0ZZ 
and 

C = [cis] 1 <~ i,j <~ n 

with 

Cij = k l j h i j  = k j l h j i  = cji (i ¢ .j), 

C i i =  --  i k i jhiJ  (kiihii  = 0).  
j 1 

Fur the r  A can be reduced to its Jordan  canonical form J, 
where 

A = KJK 1 (3) 

o r  

AK = KJ. 

As A is of rank n -  1, then in the strncture of J only one 
Jo rdan  submatr ix  can be distinguished. The form of J is 

2 

J = - 0  I 

\0:~ 
0 ~ J '  

s 
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(4) 

S 
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The structure of J '  will not be impor tan t  for further con- 
siderations. 

The order  of the Jordan  submatr ix  s is equal to multiplicity 
of zero latent roots. 

The t ransforming matrix K is built of n vectors 
et . . . .  , e . . . . . .  e, which are forming the set of linearly in- 
dependent columns. Hence. 

K -- [ e l ,  e2 . . . . .  e . . . . . .  e . ] .  

Note that only el is the eigenvector corresponding to zero 
latent root. 

Regarding the above notat ion (3) may be written in the form 

B tC[e  1, e2 . . . . .  e . . . . . .  e°] = [ea . . . . .  e . . . . . .  enid. (5) 

F r o m  (4) and (5) it follows that 

B l C e l  = 0 ¢ > C e l  = 0 

B 1Cee = el ¢~Cee - Be1 (6) 

B 1 C e 3  - e2 ¢>Ce3 = Be: 

B l C e ~ = e ~  l ¢ > C e s = B e s  1. 

Fo r  the proof  it is sufficient to show that the order  s of the 
Jordan submatr ix  (4) does not  exceed two. 

(a) It is apparent  that the Jordan snbmatr ix  of order  s = 1 
always exists. 

(b) Fo r  the existence of the Jordan submatr ix  of order  
s = 2, two first equat ions of (6) have to be satisfied. Vector 
el can be calculated from the first of these and as all the 
cofactors of C are equal [1], then it has the form 

el - (1, 1 . . . . .  1). 

Vector e2 has to satisfy the second equation (6) and also, 
according to lemma 1, the relation 

(Ce2, el) = 0 

o r  

(Be1,  e~) - 0 

hence, when the structure ofe~ and B is regarded, well known 
relation [-1] is obtained. 

w1 + w2 + . . . +  w,  = o. 

(c) Fo r  s ~> 3 at least three first equations of (6) have to 
be satisfied, then 

e e l  = 0 

Ce2 = Be1 (6a) 

Ce3 = Bee 

but it results also from lemma 1 that 

( C e j ,  e l )  - -  0 

and, as B is a symmetr ix matrix, we obtain further 

(Bee, e0 = (ee, Be0  = 0. 

The subst i tut ion of the second equat ion of (6a) into the one 
above gives 

(ez, Ce2) - 0. 

As Ce2 ¢ 0, the assumpt ion  of s ~> 3 leads to the contra-  
diction with the corollary of lemma 2. completing the p roof  
of the theorem. 
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NOMENCLATURE 
a, amplitude of oscillation; 
d, cylinder diameter; 
9, acceleration due to gravity; 
H, heat-transfer factor (defined in text); 
h, heat-transfer coefficient; 
k, thermal conductivity; 
R, cylinder radius; 
AT, difference in temperature between cylinder surface 

and distant air; 
/~, thermal coefficient of expansion of air; 
~, 4Res/Grl/Z; 
2, ratio of thicknesses, natural convection boundary 

layer to harmonic oscillation boundary layers; 
v, kinematic viscosity; 
co, circular frequency of imposed harmonic 

oscillation; 
Gr, Grashof number, flflATR3/v2; 
Nu, Nusselt number, hd/k; 
Re~, streaming Reynolds number, a2co/v. 

RECENT analysis of the effects of vibrations on heat transfer 
occurring otherwise by pure natural convection have shown 
a significant role should be played by a boundary-layer 
thickness parameter 2 [1]. Experimental data obtained by 
Lowe [2] happen to fall in a range of 2 where effects of 2 
should be strong, and allow some comparisons which are 
described here. 

Effects of vibration and sound fields on heat and mass 
transfer have often been measured for a circular cylinder 
with the oscillations transverse to its axis. There are several 
different classes of flow situations which can dominate the 
transfer process, and no single correlation can reasonably 
be used to fit all the data [3]. Even in the absence of 
natural convection effects, data may fall into at least three 
distinct characteristic solutions in one of which convection 
is dominated by outer streaming at large streaming Reynolds 
numbers [4]. Analysis of combined natural convection and 
horizontal or vertical oscillations at a heated horizontal 
cylinder [1] for large Grashof and large streaming Reynolds 
numbers, predicts local changes in boundary-layer thickness 
and heat transfer; these changes correspond to the directions 
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of local changes observed in experiments at large Grashof 
and small streaming Reynolds numbers [5]. 

The analysis [1] draws attention to the additional char- 
acteristic parameter 2 = R/Gr~/4(2v/o9) 1/2, the ratio of the 
natural convection boundary-layer thickness to the oscil- 
lating boundary-layer thickness. At any finite value of 
e = 4 Res/Gr 1/2 = 4(a2~/v)/Gr 1/2, the change in heat-transfer 
increases with 2, rapidly at small values of 2(< 10, say), 
and approaches a finite limit as 2 ~ ~ .  

Experimental data at large values of streaming Reynolds 
number Res = a2og/v are most easily obtained when co is 
small because a can be quite large then. When co is small, 
however, the oscillation boundary-layer thickness (2v/o9) I/2 
is relatively large and values of 2 may typically fall in the 
range 2 to 10, which complicates correlation of data because 
of the relatively strong effect of 2 in this range. At present 
there does not seem to be local data available at large Res 
to compare with the predictions of the analysis that hori- 
zontal oscillations increase the heat-transfer rate at the 
bottom of the cylinder, and that vertical oscillations de- 
crease the heat transfer, as e is increased from zero to 
moderate values. (As e becomes large, one must expect 
effects of natural convection to become unimportant.) 
However, the unpublished thesis of Lowe [2] contains 
data for overall heat transfer at moderate Grashof numbers 
(about 3 x 103) and with streaming Reynolds numbers up 
to 800 ("large"), and it is worthwhile examining these data 
in the light of the analyses. 

The following points can be established about Lowe's 
data: 

(1) The experimental results merge with the two pertinent 
asymptotes. Figure 1, in which (Nu/Grl/4){l +0.94(a/d)} is 
plotted as a function of e, shows how the data approach 
the asymptotic cases of ~: -* 0 (pure natural convection) and 

~ m (acoustic streaming dominant) [4]. The value of 
Nu/Gr 1/4 expected as ~, --, 0 is somewhat larger than that for 
large Gr (i.e. for the boundary-layer solution as Gr ~ ~ )  
because of boundary-layer curvature effects [6]. 

(2) The rise of overall heat transfer as e increases from 
zero is slower than the change of local heat transfer 
predicted by analysis [1] for the same range of 2. A similar 
observation has been found in other experiments with much 
higher values of 2 [5, 7], where it was found that there are 
simultaneous local changes of opposing sign and similar 
magnitude at different locations around the cylinder. 


